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Nonresonance optical breathers in nonlinear and dispersive media
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A theory of nonresonance optical breathers in nonlinear and dispersive media is developed. The optical wave
equation with a damping term can be solved by using the reductive-perturbation method. Explicit analytic
expressions for the parameters of these nonlinear waves are obtained. The stability of a breather in the presence
of its interaction with impurity-resonance atoms and a finite conductivity is also discussed in detail.
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I. INTRODUCTION

The propagation of an optical wave in a medium is a
companied by various changes of its form. The main mec
nisms that change the forms of waves are dispersion an
the amplitude of a wave is finite, nonlinearity. The mo
interesting are those wave processes for which the eff
distorting the form of the wave compensate each other
actly. Under these conditions nonlinear waves of an invar
profile are formed. Among nonlinear waves of a station
form, solitons and breathers are very often encountered.
propagation of these waves displays its own specific featu
In nonlinear physical theories they play as fundamenta
role as harmonic oscillations do in the linear wave theo
The conditions for the existence of solitons and breathers
different. A breather is the bound state of a soliton and
antisoliton. It possesses an internal structure. Such a for
tion is unstable if its energy exactly equals the sum of
energies of a separated soliton and antisoliton, i.e., if
binding energy is zero. This condition is not stable, in th
even a small perturbation leads to decay of the bound s
into a separate soliton and antisoliton whose velocities
proportional to the perturbation and generally differ. Exac
such a situation is realized, for example, for the breathe
the nonlinear Schro¨dinger equation~NSE!, where at the same
time a soliton solution of this equation is quite stable. Co
sequently, in one and the same system the existence of
tons does not assure the existence of breathers, and
versa. Unlike solitons, breathers can be excited for relativ
small amplitudes~energies! or areas of pulses@1–5#. They
arouse particular interest, because breather solutions of s
equations of nonlinear optics are highly stable. The deter
nation of the mechanisms causing the formation of breath
and the study of influences leading to a variation of th
parameters are among the principal problems of nonlin
waves. The mechanisms of formation of breathers are va
and depend on the properties of the medium in which
optical wave propagates, as well as on the parameters o
wave.

In recent years there has been growing interest in
analysis and characterization of nonlinear dispersive syst
in optics@6–8#. In the propagation of a pulse in a dispersi
551063-651X/97/55~6!/7712~8!/$10.00
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medium, its shape will not remain unchanged: its width w
spread. This is due to the fact that waves of different wa
lengths propagate in a dispersive medium with different
locities.

On the other hand, the effects of nonlinearity lead to
progressive deformation of the initial pulse, which increas
with increasing time. As a result of the competition betwe
the nonlinearity, which increases the curvature of the pro
of the pulse, and the dispersion, which causes the profil
broaden, the shape of the nonlinear wave is stabilized
breather state is formed.

The basic sources of the optical nonresonance nonlin
ity in solids may be the following. The medium possesse
nonlinear susceptibility, principal of which are nonlineariti
of second~quadratic! and third~cubic! orders. In the case o
quadratic nonlinearity, the interaction of wave packets of d
ferent frequencies can be observed, but in the case of c
nonlinearity~Kerr-type nonlinearity! self-influence of waves
take place.

Different features of solitons in these systems have b
investigated in detail. However, a whole class of interest
nonlinear phenomena, such as the mechanisms of forma
of optical breathers and the effects leading to their instabi
or changes of their parameters~for example, interaction with
free electrons, resonance-impurity atoms, and others!, have
not, to our knowledge, been investigated in these system

The processes of formation of nonresonance breathe
nonlinear and dispersive media and the stability of a brea
in the presence of its interaction with impurity-resonance
oms and a finite conductivity are also discussed in this pa

II. BASIC EQUATION

Consider the mechanism of the formation of a nonline
optical wave in a nonlinear and dispersive medium in
case where an optical pulse of widthT!T1,2, with wave
vectork and frequencyv@T21, propagates in the positive
direction along thez axis, whereT1 andT2 are the longitu-
dinal and transverse relaxation times of impurity atom
Without specifying the physical nature of the dispersive p
cess, we describe the dependence of the dielectric te
e i j on two variables—the wave vectork and frequencyv of
7712 © 1997 The American Physical Society



e-

on

hi

n-
pa-
n-
nd

tric
s of
of
er-
ring,
ical

he-

55 7713NONRESONANCE OPTICAL BREATHERS IN NONLINEAR . . .
the wave@7,8#. We will investigate the case where the m
dium is isotropic,e i j5e0d i j , where d i j is the Kronecker
symbol ande0 is the dielectric constant. The wave equati
for thex component of the strength of the electric fieldE in
this case reduces to the form

c2
]2E

]z2
5

]2D

]t2
, ~1!

wherec is the speed of light in vacuum,

D5Dl14pP ~2!

is thex component of the electric displacement vector,

Dl~z,t !5E e0~z1 ,t1!E~z2z1 ,t2t1!dz1dt1 ~3!

is the linear part of the quantityD, and

P5P~2!1P~3! ~4!

is the nonlinear part of the polarization.P(2) and P(3) are
nonresonant nonlinear polarizations of the second and t
orders:
rd

P~2!5E x~z,t,x1 ,x2 ,t1 ,t2!E~z2x1 ,t2t1!

3E~z2x12x2 ,t2t12t2!dt1dt2dx1dx2 , ~5!

P~3!5E r~z,t,x1 ,x2 ,x3 ,t1 ,t2 ,t3!E~z2x1 ,t2t1!

3E~z2x12x2 ,t2t12t2!

3E~z2x12x22x3 ,t2t12t22t3!

3dx1dx2dx3dt1dt2dt3 , ~6!

wherex andr are the quadratic and cubic susceptibility te
sors. The nonlinear optical response characterized by the
rametersx andr leads to many interesting phenomena. No
linearity of the second order is responsible for seco
harmonic generation~doubling of the frequency!, for the
generation of sum and difference frequencies, for parame
amplification, and for other effects caused by processe
the three-frequency interaction of the waves. Nonlinearity
the third order reduces to effects of the four-frequency int
action of the waves, such as self-focusing, Raman scatte
and others. Note that we do not consider here the phys
origin of the nonlinear coefficientsx andr; we regard them
as material parameters and study the nonlinear optical p
nomena to which they give rise@7,8#.

Substituting Eqs.~3!–~6! into Eq. ~2!, we obtain the fol-
lowing expression:
f a
D~z,t !5E e0~z1 ,t1!E~z2z1 ,t2t1!dz1dt114pE x~z,t,x1 ,x2 ,t1 ,t2!E~z2x1 ,t2t1!E~z2x12x2 ,t2t12t2!

3dt1dt2dx1dx214pE r~z,t,x1 ,x2 ,x3 ,t1 ,t2 ,t3!E~z2x1 ,t2t1!E~z2x12x2 ,t2t12t2!

3E~z2x12x22x3 ,t2t12t22t3!dx1dx2dx3dt1dt2dt3 . ~7!

By combining Eqs.~7! and ~1!, we obtain the following nonlinear wave equation forE:

2c2
]2E

]z2
1

]2

]t2 H E e0~z1 ,t1!E~z2z1 ,t2t1!dz1dt114pE x~z,t,x1 ,x2 ,t1 ,t2!E~z2x1 ,t2t1!E~z2x12x2 ,t2t12t2!

3dt1dt2dx1dx214pE r~z,t,x1 ,x2 ,x3 ,t1 ,t2 ,t3!E~z2x1 ,t2t1!E~z2x12x2 ,t2t12t2!

3E~z2x12x22x3 ,t2t12t22t3!dx1dx2dx3dt1dt2dt3J 50. ~8!

We can simplify Eq.~8! significantly. For this purpose, we represent the functionE in the form

E5(
l
ÊlZl , ~9!

where Êl are slowly varying complex amplitudes of the optical waveZl5eil (kz2vt) and l runs through the values61,
62,... . To guarantee the reality of the quantityE, we setÊl5Ê2 l* . We note that such a representation of the solution o
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nonlinear wave equation has been widely used in the theory of nonlinear waves@7–13#. This approximation is based on th
assumption that the envelopesÊl vary slowly in space and time as compared with the carrier wave parts, i.e.,

U]Êl

]t
U!vuÊl u, U]Êl

]z
U!kuÊl u,

and is called the slowly varying envelope approximation.
On substituting Eq.~9! into Eq. ~8!, we obtain

(
l561

ZlH SWl1 ib0

]

]t
2 ia0

]

]z
2m0

]2

]z2
2d0

]2

]t2
2g0

]2

]t]zD Êl14p (
l 8,l 9561

l 2v2F2x l ,l 8Êl2 l 8Êl 81 iA1

]Êl2 l 8
]z

Êl 8

1 i ~A11A2!Êl2 l 8

]Êl 8
]z

2 i SB112
x l ,l 8
lv D ]Êl2 l 8

]t
Êl 82 i SB11B212

x l ,l 8
lv D Êl2 l 8

]Êl 8
]t

2rÊl2 l 82 l 9Êl 8Êl 9

1 ia1
]Êl2 l 82 l 9

]z
Êl 8Êl 91 i ~a11a2!Êl2 l 82 l 9

]Êl 8
]z

Êl 91 i ~a11a21a3!Êl2 l 82 l 9Êl 8

]Êl 9
]z

2 i S b112
r

lv D ]Êl2 l 82 l 9
]t

Êl 8Êl 9

2 i S b11b212
r

lv D Êl2 l 82 l 9

]Êl 8
]t

Êl 92 i S b11b21b312
r

lv D Êl2 l 82 l 9Êl 8

]Êl 9
]t G J 50, ~10!

where

Wl5 l 2~c2k22v2k l !, a05 l ~2kc22 lv2Al !, b052 lv~2k l1 lvBl8!,

g05 lv~2Al81 lvTl !, d052~ l 2v2Dl1k l12lvBl8!, m05c22v2l 2Cl ,

k l5e0~ lk,lv!5E e0~z,t !e
il ~vt2kz!dtdz, Al85

]k l

]~ lk !
,

Bl85
]k l

]~ lv!
, Cl5

1

2

]2k l

]~ lk !2
, Dl5

1

2

]2k l

]~ lv!2
, Tl5

]2k l

]~ lk !]~ lv!
,

x l ,l 85E x~z2x,z2y,t2t1 ,t2t2!e
2 i l ~kx2vt1!2 i l 8~ky2vt2!dxdydt1dt2 ,

A15
]x l ,l 8
]~ lk !

, A25
]x l ,l 8
]~ l 8k!

, B15
]x l ,l 8
]~ lv!

, B25
]x l ,l 8

]~ l 8v!
,

r5r l ,l 8,l 95E r~z,t,x1 ,x2 ,x3 ,t1 ,t2 ,t3!e
2 i l ~kx12vt1!2 i ~ l 81 l 9!~kx22vt2!2 i l 9~kx32vt3!dx1dx2dx3dt1dt2dt3 ,

a15
]r

]~ lk !
, b15

]r

]~ lv!
,

a25
]r

]@~ l 81 l 9!k#
, b25

]r

]@~ l 81 l 9!v#
,

a35
]r

]~ l 9k!
, b35

]r

]~ l 9v!
.

The analysis of Eq.~10! can be carried out by two different methods, depending on whether we investigate the prob
the evolution of the initial perturbation~Case I! or we consider the propagation in the medium of a pulse, which is spec
on the boundary of the medium~Case II!. Although the corresponding equations appear different, we must note that in
sense they are identical to each other.

In the first case, the quantitiesÊl can be represented as@1–4,14,15#
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Êl~z,t !5 (
a51

1`

(
n52`

1`

eaYnŵ l ,n
~a!~z,t!, ~11!

where

Yn5ein~Qz2Vt !, z5eQ~z2vgt !, t5e2t, vg5
dV

dQ
,

ande is the small parameter.
In the second case, we can represent the quantityÊl as

Êl~z,t !5 (
a51

1`

(
n52`

1`

eaXnf l ,n
~a!~j,n!, ~12!

where

Xn5e in~Q̃z2Ṽt !, j5eS t2 z

u
D , n5e2z, u5S dQ̃

dṼ
D 21

.

Such a representation allows us to separate fromÊl the still more slowly changing quantitiesw l ,n
(a) and f l ,n

(a) . Consequently,
it is assumed that the quantitiesV, Q, w l ,n

(a) , and f l ,n
(a) satisfy the inequalitiesv@V, k@Q, v@Ṽ, k@Q̃, u]w l ,n

(a)/]tu
!Vuw l ,n

(a)u, u]w l ,n
(a)/]zu!Quw l ,n

(a)u, u] f l ,n
(a)/]tu!Ṽu f l ,n

(a)u, u] f l ,n
(a)/]zu!Q̃u f l ,n

(a)u.

III. BREATHER SOLUTION OF EQ. „10… IN THE FIRST CASE

We begin by considering the solution of Eq.~10! in Case I, i.e., an initial-value problem. In this analysis we use
expansion~11!. On substituting it into Eq.~10!, we obtain the equation

(
a,l ,n

eaZlYnH FW̃l ,n1eJl ,n
]

]z
1e2Hl ,n

]2

]z2
1e2hl ,n

]

]t
1O~e3!Gw l ,n

~a!

2 (
a8,l 8,n8

ea8FFl ,n,l 8,n8w l2 l 8,n2n8
~a! w l 8,n8

~a8!
2 i eS f l ,n,l 8,n8 ]w l2 l 8,n2n8

~a!

]z
w l 8,n8

~a8!
1 f̃ l ,n,l 8,n8w l2 l 8,n2n8

~a!
]w l 8,n8

~a8!

]z
D G

2 (
a8,l 8,n8,a9,l 9,n9

ea81a9l l ,n,l 8,n8,l 9,n9w l2 l 82 l 9,n2n82n9
~a! w l 8n8

~a8!w l 9,n9
~a9! J 50, ~13!

where

W̃l ,n5Wl1aQ1bV2gVQ1dV21mQ2,

Jl ,n5
Q

in
@a1bvg12Qm12dVvg2g~V1Qvg!#,

Hl ,n52
Q2

n2
~m1dvg

22gvg!, hl ,n5
i

n
~b12dV2gQ!,

~14!

Fl ,n,l 8,n854p l 2v2Fx l ,l 81~n2n8!QA12n8Q~A11A2!1~n2n8!VSB112
x l ,l 8
lv D1n8VSB11B212

x l ,l 8
lv D G ,

l l ,n,l 8,n8,l 9,n954p l 2v2H r1nS a1Q1b1V1
2V

lv
r D1~a2Q1b2V!n81@~a21a3!Q1~b21b3!V#n9J ,

a5na0 , b5nb0 , g5n2g0 , d5n2d0 , m5n2m0 .

The explicit forms of the quantitiesf l ,n,l 8,n8 and f l ,n,l 8,n8 are not needed because they do not enter into the final resu
To determine the values ofw l ,n

(a) , we equate to zero the terms corresponding to like powers ofe. As a result, we obtain a
chain of equations: in first order ine,
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W̃l ,nw l ,n
~1!50; ~15!

in second order ine,

W̃l ,nw l ,n
~2!1Jl ,n

]

]z
w l ,n

~1!2 (
l 8,n8

Fl ,n,l 8,n8w l2 l 8,n2n8
~1! w l 8,n8

~1!
50; ~16!

and in third order ine,

W̃l ,nw l ,n
~3!1Jl ,n

]

]z
w l ,n

~2!1Hl ,n

]2

]z2
w l ,n

~1!1hl ,n
]

]t
w l ,n

~1!2 (
l 8,n8,l 9,n952`

1` FFl ,n,l 8,n8~w l2 l 8,n2n8
~2! w l 8,n8

~1!
1w l2 l 8,n2n8

~1! w l 8,n8
~2!

!

2 i S f l ,n,l 8,n8 ]w l2 l 8,n2n8
~1!

]z
w l 8,n8

~1!
1 f̃ l ,n,l 8,n8w l2 l 8,n2n8

~1!
]w l 8,n8

~1!

]z
D 2l l ,n,l 8,n8,l 9,n9w l2 l 82 l 9,n2n82n9

~1! w l 8,n8
~1! w l 9,n9

~1! G50.

~17!
h

n
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In dispersive media,W05W6150 and Wu l u.1Þ0. In
what follows, we shall also be interested in a breather t
vanishes att→6`. Consequently, according to Eq.~15!,
only the following terms of all the quantitiesw l ,n

(1) differ from
zero: w61,61

(1) or w61,71
(1) . Here we consider the situatio

wherew61,61
(1) Þ0 andw61,71

(1) 50 in detail. The relation be-
tween the quantitiesV andQ, for fixed values ofl5n5
61, is determined from the equation

aQ1bV2gVQ1dV21mQ250. ~18!

Substituting Eq.~18! into Eq. ~14!, we easily see that the
following relation holds:

J61,6150. ~19!

From Eq. ~16!, we obtain the connection betweenw62,62
(2)

andw61,61
(1) :

w62,62
~2! 5

F62,62,6161

W̃62,62

~w61,61
~1! !2. ~20!

Substituting Eqs.~18!–~20! in Eq. ~17!, we obtain an equa
tion for the quantitiesc l(y,t)5eAqlw l ,l

(1) :

i l
]c l

]t
1

]2c l

]yl
2 1uc l u2c l50, l5n561, ~21!

where

ql5
Ml1Ll
hl

, yl5
z2vgt

Apl
, hl5 i lh l ,l ,

pl52
Hl ,l

hlQ
2 5

1

2

]2V

]Q2 ,

Ml5~Fl ,l ,2 l ,2 l1Fl ,l ,2l ,2l !
F2l ,2l ,l ,l

W̃2l ,2l

,

Ll5l l ,l ,2 l ,2 l ,l ,l1l l ,l ,l ,l ,2 l ,2 l .
at
Equation~21! is the well-known NSE, which, under th

conditionplql.0, has the soliton solution

c l52i l h
e2 i l w1l

cosh 2hw2l

, ~22!

where

w1l
5
2j0z

Apl
12F2~j0

22h2!2
j0vg
Apl

G t2w0 ,

w2l
5

z

Apl
1S 4j02

vg
Apl

D t2y0 .

The quantitiesj0 , h, w0 , andy0 are scattering data, which
arise when the NSE is solved by the inverse scattering tra
form ~IST! @14,16#. Substituting the soliton solution~22! into
Eq. ~11!, we obtain for the envelopeÊl the breather solution
@1–5,11,12#

Êl5
2i l h

Aql

e2 i l ~w1l
1Vt2Qz!

cosh 2hw2l

1O~e2!. ~23!

Using the IST, we can obtain the breather solution~23! for
any initial valueÊ(t50,z). The appearance in Eq.~23! of
the factor e2 i l (Qz2Vt) indicates the formation of periodic
beats~slow in comparison with coordinates and time, wi
characteristic parametersV andQ!, as a result of which the
soliton solution~22! for w l ,l

(1) is transformed into the solution
~23! for the envelopeÊl . Consequently, in dispersive an
nonlinear media with quadratic and/or cubic nonlinearity,
optical nonlinear wave of the type of the breather~23! can
propagate.

IV. BREATHER SOLUTION OF EQ. „10…
IN THE SECOND CASE

Here we consider the same problem in Case II, i.e.,
now investigate a boundary-value problem. In this case,
use expansion~12! for the solution of Eq.~10!. On substitut-
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ing Eq. ~12! into Eq. ~10!, as was done in the precedin
section, we obtain the NSE in the following form:

i l
]x l

]z
1

]2x l

]Tl
2 1ux l u2x l50, l561, ~24!

where

x l5eAq̃l f l ,l~1! , Tl5
1

Ap̃l
S t2 z

uD ,
p̃l5

m1du22gu

u2~a12mQ2gV!
, q̃l5

Ml1Ll
a12mQ2gV

.

In this case, the relation between the quantitiesṼ andQ̃
has the same form as given by Eq.~18! if we substituteṼ
andQ̃ for V andQ in the latter and

x l52i l h
e2 i l d1l

cosh 2hd2l
, ~25!

where

d1l5
2j0

Ap̃l
t1F4~j0

22h2!2
2j0

Ap̃lu
Gz2w0 ,

d2l5
t

Ap̃l
1S 4j02

1

uAp̃l
D z2y0 .

By substituting Eq.~25! in Eq. ~12!, we obtain the breathe
solution of Eq.~10! in the second case:

Êl5
2i l h

Aq̃l

e2 i l ~d1l
1Ṽt2Q̃z!

cosh 2hd2l
1O~e2!. ~26!

Using the IST, we can obtain the breather solution~26! of
Eq. ~10! for any boundary value of the quantityÊ(z50,t).

V. THE STABILITY OF THE BREATHER

The wave equation~10! describes the situation where th
propagation of nonlinear optical waves in a nonlinear disp
sive medium is not influenced by such factors as, for
ample, the interaction of the optical radiation with impurit
resonance atoms contained in the medium or with therma
coherent phonons, the effect of a finite conductivity, or o
ers. Depending on the nature of their influence upon
wave process, these effects can be divided into two gro
The effects that lead to a change in the phase of the nonli
wave enter into the first group, and the second group
cludes the effects causing the damping of breathers. We
sider the effects associated with these two groups and in
encing the breather by means of two examples: by the lin
coherent interaction of optical radiation with impurity
resonance atoms contained in the medium, and by taking
account the conductivity. We can use perturbation theo
taking into account that the influence of these phenom
upon the breather is weak. For a systematic investigatio
the influence of the effects mentioned above on the brea
r-
-

or
-
e
s.
ar
-
n-
u-
ar

to
y,
a
of
er,

it is necessary to begin with the introduction of the cor
sponding terms into the wave equation. In particular,
expression

4p
d2

dt2
~P11P2! ~27!

must be added to Eq.~8!, where@9,17,18#

P15 (
l561

ZlÊl S i lsn0kc D , ~28!

with h0 the index of refraction ands the effective conduc-
tivity, takes into account the contribution to the polarizati
of the medium caused by the conductivity, while the quan

P25n0d0s1 ~29!

describes the effects of the one-photon resonance intera
of the optical pulse with the system of two-level impuri
atoms that are contained in the medium, wheren0 is the
concentration of optically active impurities andd0 is the ma-
trix element of the electric dipole moment of a two-lev
impurity atom. The dependence of the quantityP2 on the
strength of the electric fieldE is governed by the optica
Bloch equations@10#

]s1~ t !

]t
52v0s2~ t !,

]s2~ t !

]t
5v0s1~ t !1k0E~ t,z!s3~ t !, ~30!

]s3~ t !

]t
52k0E~ t,z!s2~ t !,

where

k05
2d0
\

, si~ t !5^ŝ i~ t !& ~ i51,2,3!.

Here,^ŝ i& is the average value of the Pauli operatorŝ i , \ is
Planck’s constant, andv0 is the frequency of the two-leve
atoms. In the interaction of an optical pulse with a resonan
absorbing medium, the most significant effects are usu
observed at exact resonance. Therefore, for simplicity,
consider equations~30! at exact resonance, i.e., withv
5v0 .

In the present section we will consider the solution of E
~8!, taking into account the term~27! in Case I, under the
condition

uQ0u!1, ~31!

where

Q0~z,t !5k0E
2`

t

Ê~z,t8!dt8

is the area of the envelope of the optical pulse.
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For the determination of the explicit form of the quanti
P2 , we expand the quantitysi in a perturbation-theory serie
in the small nonlinearity parametere,

si5 (
a50

`

eaBi
~a! .

Substituting this expansion and expression~11! in the set of
equations~30!, and taking into account Eqs.~28! and ~29!,
we obtain

4p
]2P1

]t2
524p ivse3(

l ,n
lZlYnw l ,n

~1!1O~e4!,

~32!

4p
]2P2

]t2
5e3Rt0(

l ,n

l

n
ZlYnw l ,n

~1!1O~e4!,

where

R5
4pn0d0

2v2

\V
, t0561.

The plus sign corresponds to the initial condition, in whi
the impurity atoms are initially in the ground state, i.e.,
t→2`, s3521 ~attenuating medium!. The minus sign cor-
responds to the case where att→2`, s3511, i.e., all the
impurity atoms are initially in the excited state~amplifying
medium!.

If we combine Eqs.~27! and ~32! with Eq. ~8!, we can
write the NSE in the following form:

i l S ]c l

] l
1G lc l D1r lc l1

]2c l

]yl
2 1uc l u2c l50, ~33!

where

G l5
4pvs

hl
, r l5

R

hl
t0 , l5n561.

We can remove the termr lc l from this equation by
changing the phase of the quantityc l . Indeed, let us rewrite
Eq. ~33! for the quantityQ l5c le

2 i lr l t:

i l S ]Q l

]t
1G lQ l D1

]2Q l

]yl
2 1uQ l u2Q l50. ~34!

The soliton solution of this equation withG l50 is obtained
by means of the IST in a manner analogous to the way
which Eq.~22! was obtained. Now it is more convenient
write the solution of Eq.~34! in the form

Q l5&K
eilF1l

coshF2l

, ~35!

where
t

in

F1l
5

v

2Apl
z2S v24 2K21

vvg
2Apl

D t,
~36!

F2l
5KF z

Apl
2S vg

Apl
1v D tG ,

K is a parameter proportional to the amplitude of the solit
andv is its velocity.

Using the results of the numerical calculations carried
in @15#, we can assume that a good approximation to an ex
solution of Eq.~34! will be expression~35! if the parameter
K depends on time as

Kl~ t !5Kl~0!e22G l t. ~37!

By substituting Eq.~37! in Eqs.~35! and~36!, and using Eq.
~11!, we can obtain a breather solution of Eq.~8!, with Eq.
~27! taken into account in the following form:

Êl5S 2ql D
1/2

Kl~ t !
ei @r l t1 l ~F1l

1Qz2vt !#

coshF2l

1O~e2!. ~38!

In this expression, the quantitiesF1l
and F2l

contain the

quantityKl(t) instead ofK. Hence, Eq.~38! is a breather
solution with damping (G l.0).

VI. CONCLUSION

In the present paper we have shown that in the propa
tion of intense optical radiation through a~quadratic and/or
cubic! nonlinear and~spatially and/or temporally! dispersive
medium, an optical breather can arise. The explicit form
the breather, when we consider the initial-value probl
~Case I!, is given by Eq.~23!, and, if we investigate the
boundary-value problem~Case II!, the form of the breather is
given by expression~26!. The dispersion equation and con
nection between the quantitiesV andQ ~Ṽ andQ̃! are given
by the relationsW6150 and Eq.~18!.

The physical interpretation of the formation of a breath
is the following. In the propagation of the pulse in a dispe
sive medium, its shape will not remain unchanged. T
width of the pulse will increase during propagation. This
due to the fact that waves of different wavelength propag
in a dispersive wave with different velocities. In the NS
this effect is taken into account through the term
]2c l /]yl

2, ]2x l /]T
2, ]2Q l /]yl

2.
On the other hand, the effects of nonlinearity lead to

progressive deformation of the profile of the pulse, whi
increases with increasingt. In the NSE, the nonlinear effect
are taken into account by the termsuc l u2c l , ux l u2x l ,
uQ l u2Q l .

As a result of the competition between the nonlineari
which increases the curvature of the profile of the pulse,
the dispersion, which causes the profile to spread out,
shape of the nonlinear wave is stabilized; a breather sta
formed.

It should be noted that our results and their interpretat
are applicable to pulses with sufficiently smooth envelop
under the condition that the size of the pulse is large
comparison with the wavelength, i.e.,kL@1. Moreover, the
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length of the breather should be significantly greater than
characteristic length of the periodic ‘‘beats,’’LQ@1, where
L is the length of the breather.

We must note that in Secs. III and IV we have conside
situations wherew61,61

(1) Þ0 andf61,61
(1) Þ0. Analogously, we

can investigate situations wherew61,71
(1) Þ0 and f61,71

(1) Þ0.
In Sec. V, we investigated the stability of the breath

relative to its interaction with resonance-impurity two-lev
atoms, and in the presence of a finite conductivity~in Case I,
the initial value problem!, and whenG l.0.

Analogously, we can consider this question in Case II
In Sec. V, we found that a linear-resonance interaction

the optical pulse with impurity atoms leads to a change in
phase of the pulse, and that the phase is positive or neg
depending on whether we have the situation of attenua
~whent051! or amplification~whent0521!. It should be
noted that this situation differs in principle from the situati
of self-induced transparency, in which the interaction of
wave with the resonance atoms is essentially nonlinear.

The effects of conductivity reduce to the damping of t
breather’s amplitude according to an exponential law~37!. If
we consider other effects which lead toG l,0 ~see, for ex-
ample,@19,20#!, then the amplitude of the breather will in
crease during propagation asKl(t)5Kl(0)expGlt. We note
that the results of Sec. V are valid for breathers whose
plitude is small, as in Eq.~31!. But at the same time, th
results of Secs. III and IV are valid for breathers with a
amplitude, because here we have not used the inequ
~31!.
n
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The results of Sec. V are valid for situations where t
effects of the linear interaction of the pulse with resonan
atoms is ofO(e3). If these effects are weaker, for exampl
of O(e4) or smaller, then we must use another method
solution of the NSE with damping terms~34!. Such methods
can be found, for example, in@21–23#.

In Sec. V, we considered the case of exact resonancv
5v0 and homogeneous broadening of the spectral line.
tension to the casevÞv0 and inhomogeneous broadening
the spectral line do not present difficulties. It is obvious th
in this case we should not expect qualitatively new resu
compared to those given above.

In conclusion, we note that the NSE contains not only E
~22! or ~25! or ~35!, but alsoN-soliton solutions with a more
complicated behavior. In particular, for many-soliton so
tions of the NSE there are characteristic oscillations of
envelope and strong compression of the pulse peaks alr
in the initial stages of propagation of the wave. Under the
conditions, we cannot always use the slowly varifying env
lope approximation~9!, and still less Eqs.~11! and~12! ~the
separation fromÊl of the more slowly varyingc l ,n

(a) and
f l ,n
(a)!. Therefore, the scheme presented above is not valid
such solutions, and for that a completely different method
needed~see, for example,@6#!.
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